
Java Applets

Introducing Applets

• Applets

– Java programs called from within another application

– Frequently run from a Web page

– Display as rectangular area

– Can respond to user-initiated events

– Behaviors come from Java class named JApplet

• Steps to write an applet

– Set up layout for applet

– Create components and add them to applet

Applets

• An applet is a program that is typically embedded in
a Web page and can be run from a browser

• You need special HTML in the Web page to tell the
browser about the applet

• You don’t need to supply a main method; the
browser does that
– When you write an applet, you are writing only part of a

program
– You supply certain methods that the browser calls

• For security reasons, applets run in a sandbox: they
have no access to the client’s file system

What an applet is

• You write an applet by extending the class JApplet

• JApplet is just a class like any other; you can even
use it in applications if you want

• When you write an applet, you are only writing part
of a program; the browser supplies the main method
– Once you understand how applets work, you can write a

program that function either as an applet or as an
application—just write a main method that calls the right
methods at the right time
• Such programs have the ugly name “appletcations”

The genealogy of JApplet

java.lang.Object

|

+----java.awt.Component

|

+----java.awt.Container

|

+----java.awt.Panel

|

+----java.applet.Applet

|

+----javax.swing.JApplet

The simplest possible applet

import javax.swing.JApplet;

public class TrivialApplet extends JApplet { }

<applet

code="TrivialApplet.class"

width="150"

height="100">

</applet>

TrivialApplet.java

TrivialApplet.html

The simplest reasonable applet

import java.awt.*;

import javax.swing.JApplet;

public class HelloWorld extends JApplet {

public void paint(Graphics g) {

g.drawString("Hello World!", 30, 30);

}

}

What are the disadvantages of
applets?

• Applets can’t run any local executable
programs

• Applets can’t with any host other than the
originating server

• Applets can’t read/write to local computer’s
file system

What are the disadvantages of
applets? (Cont’d)

• Applets can’t find any information about the
local computer

• All java-created pop-up windows carry a
warning message

• Stability depends on stability of the client’s
web server

• Performance directly depend on client’s
machine

What are the advantages of applets?

• Automatically integrated with HTML; hence, resolved
virtually all installation issues.

• Can be accessed from various platforms and various
java-enabled web browsers.

• Can provide dynamic, graphics capabilities and
visualizations

• Implemented in Java, an easy-to-learn OO
programming language

What are the advantages of applets?
(Cont’d)

• Alternative to HTML GUI design

• Safe! Because of the security built into the core Java
language and the applet structure, you don’t have to
worry about bad code causing damage to someone’s
system

• Can be launched as a standalone web application
independent of the host web server

Java Applets Can not
Applets are programs designed to run as part of a Web Page (Applet
= little application).

Applets are similar to normal Java Applications but have extra
security features to prevent a downloaded Applet damaging your
computer or transmitting information from it. For instance an Applet
cannot:

•Access local files
•Delete local files
•Run another program
•Find out your name
•Connect to another host

Running a Java Applet
You write Java
code using an
editor

javac MyApp.java

appletviewer MyApp.html

Java code:
MyApp.java

Bytecode:
MyApp.class

Text Editor

Window

You save the
file with a .java
extension

You run the Java
compiler 'javac'

You can view the applet with
the command 'appletviewer'

This creates a file of
bytecode with a
.class extension

Web page:
MyApp.html

Text Editor

Web

Browser

You write a
web page in
html using an
editor

You can view the web
page from a web browser

You save the
file with a
.html extension

Creating an Applet
• Open "Notepad" (Start → Programs → Other → Notepad)

• Type this in:

• Save As
"Greetings.java"
(Put the " "
round the name
otherwise it
adds .txt to the
end!)

• Open a DOS Window
(Start → MS-DOS Prompt)

• Type javac Greetings.java

G:\> javac Greetings.java

G:\>

If it gives an error check you typed it in exactly right.

import java.awt.*;

import java.applet.Applet;

public class Greetings extends Applet {

public void paint(Graphics g) {

g.drawString("Hello World!", 50, 50);

}

}

• If you type dir Greetings.* you should see Greetings.java and Greetings.class

Creating the Web Page
In order to run an applet you have to embed it in a web page using a special
<applet> tag e.g:

<applet code="name.class" width=www height=hhh></applet>

<html>

<head>

<title>Greetings Applet</title>

</head>

<body>

<applet code="Greetings.class" width=300 height=200 ></applet>

</body>

</html>

Using Notepad type in the following and
save it as "Greetings.html":

Size of the applet in pixels

Running the Program

G:\> appletviewer Greetings.html

In the DOS window type appletviewer Greetings.html

You should see
something like this:

Running in a Web Browser
In Netscape go to the File menu then Open Page ...
Press Choose File...
Find your file Greetings with the Netscape symbol alongside it
(Greetings.html) - click on it and press Open (or double click on it)
Back in the Open Page dialog press Open
You should see something like:

Title

Your greeting

Message

What does it mean?

import java.awt.*;

import java.applet.Applet;

public class Greetings extends Applet {

public void paint(Graphics g) {

g.drawString("Hello World!", 50, 50);

}

}

These 2 lines tell the computer to include
(import) two standard libraries awt
(Abstract Window Toolkit) and applet.

This line tells the computer to
display some text (a string) on
the screen.

This line announces that the program
(class) can be run by anyone (public), is
called Greetings and is an Applet.

This line declares what
follows in the { } as a
method called paint.

This is where it is displayed in
pixels across and down from
the top left hand corner

This is what is displayed

General Form of an Applet

• New applets are created by extending the Applet class
contained in the java.applet package.

• Also, the package java.awt is needed for the graphical
interface of the applet.

• In general, an applet program would look like the following:

import java.applet.*;

import java.awt.*;

public class AppletName extends Applet

{

. . .

}

General Form of an Applet (cont’d)

• An applet overrides a set of methods in the class Applet to implement its
functionality. These methods are used as an interface with the browser or
the applet viewer.

• An applet does not need to override those methods it does not use.

• The following lists the most important methods that are usually used:

import java.applet.*;

import java.awt.*;

public class AppletName extends Applet

{

public void init(){ . . . }

public void start(){ . . . }

public void stop(){ . . . }

public void destroy(){ . . .}

public void paint(Graphics g){ . . .}

}

Applet Initialization and Termination

• When an applet begins, the browser calls the following methods, in this
sequence: init(), start().

• Every time the applet is redrawn, the method paint() is called.

• When an applet is terminated, the following sequence of methods is
invoked: stop(), destroy().

Method Comment

init() Applets do not usually have main method; instead they have the init()
method that, like main(), is invoked by the execution environment. It
is the first method called for any applet. It is called only once during
the run-time of an applet.

start() Called by the execution environment when an applet should start or
resume execution. It is automatically called after init() when an applet
first begins.

stop() Called to suspend execution of the applet. Once stopped, an applet is
restarted when the execution environment calls start().

destroy() Called just before the applet is terminated. Your applet should override
this method if it needs to perform any cleanup prior to its destruction.

Applet methods

public void init ()

public void start ()

public void stop ()

public void destroy ()

public void paint (Graphics)

Also:
public void repaint()

public void update (Graphics)

public void showStatus(String)

public String getParameter(String)

public void init ()

• init() is the first method to execute

– init() is an ideal place to initialize variables

– init() is the best place to define the GUI
Components (buttons, text fields, checkboxes,
etc.), lay them out, and add listeners to them

– Almost every applet you ever write will have an
init() method

start(), stop() and destroy()

• start() and stop() are used when the Applet is doing time-
consuming calculations that you don’t want to continue when
the page is not in front

• public void start() is called:
– Right after init()

– Each time the page is loaded and restarted

• public void stop() is called:
– When the browser leaves the page
– Just before destroy()

• public void destroy() is called after stop()
– Use destroy() to explicitly release system resources (like threads)
– System resources are usually released automatically

Methods are called in this order

• init and destroy are only called
once each

• start and stop are called
whenever the browser enters and
leaves the page

• do some work is code called by
your listeners

• paint is called when the applet
needs to be repainted

init()

start()

stop()

destroy()

do some work

public void paint(Graphics g)

• Needed if you do any drawing or painting
other than just using standard GUI
Components

• Any painting you want to do should be done
here, or in a method you call from here

• Painting that you do in other methods may
or may not happen

• Never call paint(Graphics), call repaint()

repaint()

• Call repaint() when you have changed
something and want your changes to show up on
the screen

– You do not need to call repaint() when something in
Java’s own components (Buttons, TextFields, etc.)

– You do need to call repaint() after drawing commands
(drawRect(...), fillRect(...), drawString(...), etc.)

• repaint() is a request--it might not happen

• When you call repaint(), Java schedules a call to
update(Graphics g)

update()

• When you call repaint(), Java schedules a
call to update(Graphics g)

• Here's what update does:

public void update(Graphics g) {

// Fills applet with background color,

then

paint(g);

}

The paint() method

• The paint() method is called by the execution environment (i.e. the
browser) each time the applet has to be redrawn.

• The inherited paint() method is empty. In order to draw anything on the
applet, this method must be overridden.

• paint() method takes an object of class Graphics as an input argument,
which is passed by the execution environment.

public void paint(Graphics g){

. . .

}

• This Graphics object represents a drawing area. It has methods to draw
strings and many shapes. Also, it can manipulate fonts and colors.

The Graphics Object
• A Graphics object has a coordinate system that is illustrated

below:

• Anything that is drawn on the Graphics object, appears on the
applet.

• Some of the drawing methods of the Graphics object are:
– drawString()
– drawLine()
– drawRect()
– drawOval()

(0,0) x

y

Displaying Strings Using the Graphics Object

• To display a string on the Graphics object, the method drawString() can be
used. It has the following arguments:
void drawString(String str, int x, int y)

– str is the string to be displayed, x and y are the coordinates of the top left
point of the string.

• For example, the following applet displays the string “Hello World!!”
starting at the point (50,25). Its file name must be HelloApplet.java.

import java.applet.*;

import java.awt.*;

public class HelloApplet extends Applet {

public void paint(Graphics g) { // overriding paint() method

g.drawString("Hello world!", 50, 25);

}

}

Placing an Applet in a Web Page

• Recall that web pages are written in HTML. HTML language describes the
appearance of a page using tags. For example, <html> is a tag. Another
tag is <body>. Some tags have a closing tag. For example, <html> is closed
by </html>.

• HTML is based on text, just like Java. You can use any editor (like Notepad
or JCreator) to write HTML files. HTML files should have the extension
HTML, like (first.html). All HTML pages should look like:

<html>

<body>

The body of the html page… write whatever you like here.
</body>

</html>

Placing an Applet in a Web Page (cont’d)

• To place an applet in a web page, the <applet> tag is used in the body of
an HTML page as follows:
<applet code=“HelloApplet.class” width=600 height=100>

</applet>

• The parts in green are called attributes. The applet tag has three
mandatory (non-optional) attributes:
– code: the name of the class file of the applet.
– width: the width of the applet, in pixels.
– height: the height of the applet, in pixels.

• If the class file is not at the same folder as the HTML page, the codebase
attribute is used to indicate the location of the class file relative to the
directory that has the HTML page.
<applet code=“HelloApplet.class” codebase=“app\” width=600
height=100>

</applet>

Colors

• The class Color of java.awt package is used to define Color objects.

• All colors can be specified as a mix of three primary colors: red, green, and
blue. A particular color can be specified by three integers, each between 0
and 255, or by three float values, each between 0.0 and 1.0.

• The class Color has some pre-defined colors that are commonly used.

Color RGB Value
(float)

RGB Value
(integer)

Color.magen
ta

1.0F, 0.0F,
1.0F

255, 0, 255

Color.orange 1.0F, 0.8F,
0.0F

255, 200, 0

Color.pink 1.0F, 0.7F,
0.7F

255, 175,
175

Color.red 1.0F, 0.0F,
0.0F

255, 0, 0

Color.white 1.0F, 1.0F,
1.0F

255, 255,
255

Color.yellow 1.0F, 1.0F,
0.0F

255, 255, 0

Color RGB Value

(float)

RGB Value
(integer)

Color.black 0.0F, 0.0F, 0.0F 0, 0, 0

Color.blue 0.0F, 0.0F, 1.0F 0, 0, 255

Color.cyan 0.0F, 1.0F, 1.0F 0, 255, 255

Color.gray 0.5F, 0.5F, 0.5F 128, 128,
128

Color.darkGra
y

0.25F, 0.25F,
0.25F

64, 64, 64

Color.lightGra
y

0.75F, 0.75F,
0.75F

192, 192,
192

Color.green 0.0F, 1.0F, 0.0F 0, 255, 0

Colors (cont’d)

• A Color object can be created using one of two constructors:
Color(int red, int green, int blue)

Color(float red, float green, float blue)

• For example:
Color c1 = new Color(255, 100, 18);

Color c2 = new Color(0.2F, 0.6F, 0.3F);

• By default, the Graphics object has a black foreground and a
light gray background. This can be changed using the following
methods (of the Graphics object):

void setBackground(Color newColor)

void setForeground(Color newColor)

void setColor(Color newColor)

Colors (cont’d)

• The following example displays some strings in different colors.
• Although it is possible to set the background and foreground colors in the

paint() method, a good place to set these colors is in the init() method.

import java.awt.*; import java.applet.*;

public class MyApplet extends Applet {

public void init() {

setBackground(Color.blue);

setForeground(Color.yellow);

}

public void paint(Graphics g) {

g.drawString("A yellow string", 50, 10);

g.setColor(Color.red) ;

g.drawString("A red string", 50, 50);

g.drawString("Another red string", 50, 90);

g.setColor(Color.magenta) ;

g.drawString("A magenta string", 50, 130);

}

}

Drawing Some Shapes
• An oval can be drawn using the method drawOval() as follows:

void drawOval(int x, int y, int width, int height)

• A rectangle can be drawn using the method drawRect() as
follows:
void drawRect(int x, int y, int width, int height)

• A line linking two points can be drawn using the method
drawLine() as follows:
void drawLine(int x1, int y1, int x2, int y2)

• To draw a shape using a specific color, the method setColor()
should be used before drawing the shape.

• There are no methods called drawCircle() or drawSquare().
– How can we draw a circle or a square..???

Executing a Java Applet
• A Java applet must be compiled into bytecode before it

can be used in a web page.

• When a web page containing an <applet> tag is opened,
the associated bytecode is downloaded from the
location specified by the CODE or CODEBASE attribute.
This location can be in the local machine or in a
machine across the web.

• To interpret the applet bytecode, the browser must
have a Java plug-in.

• Also, an applet can be executed using the applet viewer,
which comes with the JDK.

Comparing Applets with Applications

An Application An Applet

Runs independently Has to run inside another program,
called execution environment (like a
web browser or an applet viewer)

Starts by the main() method Starts by the init() method

Doesn’t have to extend any class Has to extend java.applet.Applet class

Can work with command-line (like
what are always doing), or using a
graphical user-interface (GUI)

{More on this in ICS-201}

Almost always works with GUI

Has an unrestricted access to the
machine resources

Has a restricted access to the machine
resources (cannot open files or run
other programs) {Security
reasons}

A Simple Java Applet: Drawing a
String

• Now, create applets of our own

– Take a while before we can write applets like in
the demos

– Cover many of same techniques

• Upcoming program

– Create an applet to display

"Welcome to Java Programming!"

– Show applet and HTML file, then discuss them line
by line

© 2002 Prentice Hall.

All rights reserved.

Outline

Java applet

Program Output

1 // Fig. 3.6: WelcomeApplet.java

2 // A first applet in Java.

3

4 // Java core packages

5 import java.awt.Graphics; // import class Graphics

6

7 // Java extension packages

8 import javax.swing.JApplet; // import class JApplet

9

10 public class WelcomeApplet extends JApplet {

11

12 // draw text on applet’s background

13 public void paint(Graphics g)

14 {

15 // call inherited version of method paint

16 super.paint(g);

17

18 // draw a String at x-coordinate 25 and y-coordinate 25

19 g.drawString("Welcome to Java Programming!", 25, 25);

20

21 } // end method paint

22

23 } // end class WelcomeApplet

import allows us to use

predefined classes (allowing

us to use applets and

graphics, in this case).

extends allows us to inherit the

capabilities of class JApplet.

Method paint is guaranteed to

be called in all applets. Its first

line must be defined as above.

java.sun.com/products/jdk/1.3/
http://www.netscape.com/

© 2002 Prentice Hall. All rights reserved.

3.3 A Simple Java Applet: Drawing a String

– Comments

• Name of source code and description of applet

– Import predefined classes grouped into packages

• import statements tell compiler where to locate classes used

• When you create applets, import the JApplet class

(package javax.swing)

• import the Graphics class (package java.awt) to draw

graphics

– Can draw lines, rectangles ovals, strings of characters

• import specifies directory structure

5 import java.awt.Graphics; // import class Graphics

8 import javax.swing.JApplet; // import class JApplet

1 // Fig. 3.6: WelcomeApplet.java

2 // A first applet in Java.

© 2002 Prentice Hall. All rights reserved.

3.3 A Simple Java Applet: Drawing a String

– Applets have at least one class definition (like applications)

• Rarely create classes from scratch

– Use pieces of existing class definitions

– Inheritance - create new classes from old ones (ch. 15)

– Begins class definition for class WelcomeApplet

• Keyword class then class name

– extends followed by class name

• Indicates class to inherit from (JApplet)

– JApplet : superclass (base class)

– WelcomeApplet : subclass (derived class)

• WelcomeApplet now has methods and data of JApplet

10 public class WelcomeApplet extends JApplet {

© 2002 Prentice Hall. All rights reserved.

3.3 A Simple Java Applet: Drawing a String

– Class JApplet defined for us

• Someone else defined "what it means to be an applet"

– Applets require over 200 methods!

• extends JApplet

– Inherit methods, do not have to define them all

• Do not need to know every detail of class JApplet

10 public class WelcomeApplet extends JApplet {

© 2002 Prentice Hall. All rights reserved.

3.3 A Simple Java Applet: Drawing a String

– Class WelcomeApplet is a blueprint

• appletviewer or browser creates an object of class

WelcomeApplet

– Keyword public required

– File can only have one public class

– public class name must be file name

10 public class WelcomeApplet extends JApplet {

© 2002 Prentice Hall. All rights reserved.

3.3 A Simple Java Applet: Drawing a String

– Our class inherits method paint from JApplet

• By default, paint has empty body

• Override (redefine) paint in our class

– Methods paint, init, and start

• Guaranteed to be called automatically

• Our applet gets "free" version of these by inheriting from
JApplet

– Free versions have empty body (do nothing)

– Every applet does not need all three methods

• Override the ones you need

– Applet container “draws itself” by calling method paint

13 public void paint(Graphics g)

© 2002 Prentice Hall. All rights reserved.

3.3 A Simple Java Applet: Drawing a String

– Method paint

• Lines 13-21 are the definition of paint

• Draws graphics on screen

• void indicates paint returns nothing when finishes task

• Parenthesis define parameter list - where methods receive data

to perform tasks

– Normally, data passed by programmer, as in
JOptionPane.showMessageDialog

• paint gets parameters automatically

– Graphics object used by paint

• Mimic paint's first line

13 public void paint(Graphics g)

© 2002 Prentice Hall. All rights reserved.

3.3 A Simple Java Applet: Drawing a String

– Calls version of method paint from superclass JApplet

– Should be first statement in every applet’s paint method

– Body of paint

• Method drawString (of class Graphics)

• Called using Graphics object g and dot operator (.)

• Method name, then parenthesis with arguments

– First argument: String to draw

– Second: x coordinate (in pixels) location

– Third: y coordinate (in pixels) location

– Java coordinate system

• Measured in pixels (picture elements)

• Upper left is (0,0)

16 super.paint(g);

19 g.drawString("Welcome to Java Programming!", 25, 25);

© 2002 Prentice Hall. All rights reserved.

3.3.1 Compiling and Executing WelcomeApplet

• Running the applet

– Compile

• javac WelcomeApplet.java

• If no errors, bytecodes stored in WelcomeApplet.class

– Create an HTML file

• Loads the applet into appletviewer or a browser

• Ends in .htm or .html

– To execute an applet

• Create an HTML file indicating which applet the browser (or
appletviewer) should load and execute

© 2002 Prentice Hall. All rights reserved.

3.3.1 Compiling and Executing WelcomeApplet

– Simple HTML file (WelcomeApplet.html)

• Usually in same directory as .class file

• Remember, .class file created after compilation

– HTML codes (tags)

• Usually come in pairs

• Begin with < and end with >

– Lines 1 and 4 - begin and end the HTML tags

– Line 2 - begins <applet> tag

• Specifies code to use for applet

• Specifies width and height of display area in pixels

– Line 3 - ends <applet> tag

1 <html>
2 <applet code = "WelcomeLines.class" width = "300" height = "40">

3 </applet>
4 </html>

© 2002 Prentice Hall. All rights reserved.

3.3.1 Compiling and Executing WelcomeApplet

– appletviewer only understands <applet> tags

• Ignores everything else

• Minimal browser

– Executing the applet

• appletviewer WelcomeApplet.html

• Perform in directory containing .class file

1 <html>
2 <applet code = "WelcomeLines.class" width = "300" height = "40">

3 </applet>
4 </html>

© 2002 Prentice Hall. All rights reserved.

3.4 Two More Simple Applets: Drawing Strings
and Lines

• More applets

– First example

• Display two lines of text

• Use drawString to simulate a new line with two

drawString statements

– Second example

• Method g.drawLine(x1, y1, x2, y2)

– Draws a line from (x1, y1) to (x2, y2)

– Remember that (0, 0) is upper left

• Use drawLine to draw a line beneath and above a string

© 2002 Prentice Hall.

All rights reserved.

Outline1 // Fig. 3.8: WelcomeApplet2.java

2 // Displaying multiple strings in an applet.

3

4 // Java core packages

5 import java.awt.Graphics; // import class Graphics

6

7 // Java extension packages

8 import javax.swing.JApplet; // import class JApplet

9

10 public class WelcomeApplet2 extends JApplet {

11

12 // draw text on applet’s background

13 public void paint(Graphics g)

14 {

15 // call inherited version of method paint

16 super.paint(g);

17

18 // draw two Strings at different locations

19 g.drawString("Welcome to", 25, 25);

20 g.drawString("Java Programming!", 25, 40);

21

22 } // end method paint

23

24 } // end class WelcomeApplet2

1. import

2. Class

WelcomeApplet2

(extends

JApplet)

3. paint

3.1 drawString

3.2 drawString

on same x

coordinate, but

15 pixels downThe two drawString

statements simulate a newline. In

fact, the concept of lines of text

does not exist when drawing

strings.

java.sun.com/products/jdk/1.3/
http://www.netscape.com/

© 2002 Prentice Hall.

All rights reserved.

Outline

HTML file

Program Output

1 <html>

2 <applet code = "WelcomeApplet2.class" width = "300" height = "60">

3 </applet>

4 </html>

java.sun.com/products/jdk/1.3/
http://www.netscape.com/

© 2002 Prentice Hall.

All rights reserved.

Outline

WelcomeLines.java

2. Class

WelcomeLines

(extends

JApplet)

3. paint

3.1 drawLine

3.2 drawLine

3.3 drawString

Program Output

1 // Fig. 3.10: WelcomeLines.java
2 // Displaying text and lines
3
4 // Java core packages
5 import java.awt.Graphics; // import class Graphics

6
7 // Java extension packages
8 import javax.swing.JApplet; // import class JApplet

9
10 public class WelcomeLines extends JApplet {

11
12 // draw lines and a string on applet’s background

13 public void paint(Graphics g)

14 {

15 // call inherited version of method paint

16 super.paint(g);

17
18 // draw horizontal line from (15, 10) to (210, 10)

19 g.drawLine(15, 10, 210, 10);

20
21 // draw horizontal line from (15, 30) to (210, 30)

22 g.drawLine(15, 30, 210, 30);

23
24 // draw String between lines at location (25, 25)

25 g.drawString("Welcome to Java Programming!", 25, 25);

26
27 } // end method paint

28
29 } // end class WelcomeLines

Draw horizontal lines with
drawLine (endpoints have same

y coordinate).

java.sun.com/products/jdk/1.3/
http://www.netscape.com/

© 2002 Prentice Hall.

All rights reserved.

Outline

HTML file

1 <html>

2 <applet code = "WelcomeLines.class" width = "300" height = "40">

3 </applet>

4 </html>

java.sun.com/products/jdk/1.3/
http://www.netscape.com/

© 2002 Prentice Hall. All rights reserved.

3.4 Two More Simple Applets: Drawing Strings
and Lines

• Method drawLine of class Graphics

– Takes as arguments Graphics object and line’s end points

– X and y coordinate of first endpoint

– X and y coordinate of second endpoint

© 2002 Prentice Hall. All rights reserved.

3.5 Another Java Applet: Adding Floating-Point
Numbers

• Next applet

– Mimics application for adding two integers (Fig 2.9)

• This time, use floating point numbers (numbers with a decimal

point)

– Using primitive data types

• Double – double precision floating-point numbers

• Float – single precision floating-point numbers

– Show program, then discuss

© 2002 Prentice Hall.

All rights reserved.

Outline

AdditionApplet.java

1. import

2. Class

AdditionApplet

(extends

JApplet)

3. Instance variable

4. init

4.1 Declare variables

4.2

showInputDialog

4.3 parseDouble

2 // Adding two floating-point numbers

3 import java.awt.Graphics; // import class Graphics

5

6 public class AdditionApplet extends JApplet {

7 double sum; // sum of the values entered by the user

8

9 public void init()

10 {

11 String firstNumber, // first string entered by user

12 secondNumber; // second string entered by user

13 double number1, // first number to add

14 number2; // second number to add

15

16 // read in first number from user

17 firstNumber =

18 JOptionPane.showInputDialog(

19 "Enter first floating-point value");

20

21 // read in second number from user

22 secondNumber =

23 JOptionPane.showInputDialog(

24 "Enter second floating-point value");

25

26

27 // convert numbers from type String to type double

1 // Fig. 3.12: AdditionApplet.java

2 // Adding two floating-point numbers.

3

4 // Java core packages

5 import java.awt.Graphics; // import class Graphics

6

7 // Java extension packages

8 import javax.swing.*; // import package javax.swing

9

10 public class AdditionApplet extends JApplet {

11 double sum; // sum of values entered by user

12

13 // initialize applet by obtaining values from user

14 public void init()

15 {

16 String firstNumber; // first string entered by user

17 String secondNumber; // second string entered by user

18 double number1; // first number to add

19 double number2; // second number to add

20

21 // obtain first number from user

22 firstNumber = JOptionPane.showInputDialog(

23 "Enter first floating-point value");

24

25 // obtain second number from user

26 secondNumber = JOptionPane.showInputDialog(

27 "Enter second floating-point value");

28

29 // convert numbers from type String to type double

30 number1 = Double.parseDouble(firstNumber);

31 number2 = Double.parseDouble(secondNumber);

32

* allows any class in the the

package to be used.

Instance variable sum may be used anywhere

in the class, even in other methods.

Data type double can store floating point

numbers.

java.sun.com/products/jdk/1.3/
http://www.netscape.com/

© 2002 Prentice Hall.

All rights reserved.

Outline

5. Draw applet

contents

5.1 Draw a rectangle

5.2 Draw the results

HTML file

31 // add the numbers

32 sum = number1 + number2;

33 }

34

35 public void paint(Graphics g)

36 {

37 // draw the results with g.drawString

38 g.drawRect(15, 10, 270, 20);

39 g.drawString("The sum is " + sum, 25, 25);

40 }

41 }

1 <html>

2 <applet code="AdditionApplet.class" width=300 height=50>

3 </applet>

4 </html>

33 // add numbers

34 sum = number1 + number2;

35 }

36

37 // draw results in a rectangle on applet’s background

38 public void paint(Graphics g)

39 {

40 // call inherited version of method paint

41 super.paint(g);

42

43 // draw rectangle starting from (15, 10) that is 270

44 // pixels wide and 20 pixels tall

45 g.drawRect(15, 10, 270, 20);

46

47 // draw results as a String at (25, 25)

48 g.drawString("The sum is " + sum, 25, 25);

49

50 } // end method paint

51

52 } // end class AdditionApplet

1 <html>

2 <applet code = "WelcomeLines.class" width = "300" height = "40">

3 </applet>

4 </html>

drawRect takes the upper left coordinate, width,

and height of the rectangle to draw.

java.sun.com/products/jdk/1.3/
http://www.netscape.com/

© 2002 Prentice Hall.

All rights reserved.

Outline

java.sun.com/products/jdk/1.3/
http://www.netscape.com/

© 2002 Prentice Hall. All rights reserved.

3.5 Another Java Applet: Adding Floating-Point
Numbers

– Lines 1-2: Comments

– Line 5: imports class Graphics

• import not needed if use full package and class name

public void paint (java.awt.Graphics g)

– Line 8: specify entire javax.swing package

• * indicates all classes in javax.swing are available

– Includes JApplet and JOptionPane

– Use JOptionPane instead of

javax.swing.JOptionPane

• * does not not load all classes

– Compiler only loads classes it uses

5 import java.awt.Graphics;

8 import javax.swing.*;

© 2002 Prentice Hall. All rights reserved.

3.5 Another Java Applet: Adding Floating-Point
Numbers

– Begin class definition

• Inherit from JApplet, imported from package

javax.swing

– Instance variable declaration

• Each object of class gets own copy of the instance variable

• Declared in body of class, but not inside methods

– Variables declared in methods are local variables

– Can only be used in body of method

• Instance variables can be used anywhere in class

• Have default value (0.0 in this case)

10 public class AdditionApplet extends JApplet {

11 double sum; // sum of values entered by user

© 2002 Prentice Hall. All rights reserved.

3.5 Another Java Applet: Adding Floating-Point
Numbers

– Primitive data type double

• Used to store floating point (decimal) numbers

– Method init

• Normally initializes instance variables and applet class

• Guaranteed to be first method called in applet

• First line must always appear as above

– Returns nothing (void), takes no arguments

– Begins body of method init

11 double sum; // sum of values entered by user

14 public void init()

15 {

© 2002 Prentice Hall. All rights reserved.

3.5 Another Java Applet: Adding Floating-Point
Numbers

– Declare variables

– Two types of variables

• Reference variables (called references)

– Refer to objects (contain location in memory)

• Objects defined in a class definition

• Can contain multiple data and methods

– paint receives a reference called g to a Graphics

object

– Reference used to call methods on the Graphics object

• Primitive data types (called variables)

– Contain one piece of data

16 String firstNumber; // first string entered by user

17 String secondNumber; // second string entered by user

18 double number1; // first number to add

19 double number2; // second number to add

© 2002 Prentice Hall. All rights reserved.

3.5 Another Java Applet: Adding Floating-Point
Numbers

– Distinguishing references and variables

• If data type is a class name, then reference

– String is a class

– firstNumber, secondNumber

• If data type a primitive type, then variable

– double is a primitive data type

– number1, number2

16 String firstNumber; // first string entered by user

17 String secondNumber; // second string entered by user

18 double number1; // first number to add

19 double number2; // second number to add

© 2002 Prentice Hall. All rights reserved.

3.5 Another Java Applet: Adding Floating-Point
Numbers

• Method JOptionPane.showInputDialog

• Prompts user for input with string

• Enter value in text field, click OK

– If not of correct type, error occurs

– In Chapter 14 learn how to deal with this

• Returns string user inputs

• Assignment statement to string

– Lines 26-27: As above, assigns input to secondNumber

22 firstNumber = JOptionPane.showInputDialog(

23 "Enter first floating-point value");

© 2002 Prentice Hall. All rights reserved.

3.5 Another Java Applet: Adding Floating-Point
Numbers

– static method Double.parseDouble

• Converts String argument to a double

• Returns the double value

• Remember static method syntax

– ClassName.methodName(arguments)

– Assignment statement

• sum an instance variable, can use anywhere in class

– Not defined in init but still used

34 sum = number1 + number2;

30 number1 = Double.parseDouble(firstNumber);

31 number2 = Double.parseDouble(secondNumber);

© 2002 Prentice Hall. All rights reserved.

3.5 Another Java Applet: Adding Floating-Point
Numbers

– Ends method init

• appletviewer (or browser) calls inherited method start

• start usually used with multithreading

– Advanced concept, in Chapter 15

– We do not define it, so empty definition in JApplet used

• Next, method paint called

– Method drawRect(x1, y1, width, height)

• Draw rectangle, upper left corner (x1, y1), specified width

and height

• Line 45 draws rectangle starting at (15, 10) with a width of 270

pixels and a height of 20 pixels

33 }

45 g.drawRect(15, 10, 270, 20);

© 2002 Prentice Hall. All rights reserved.

3.5 Another Java Applet: Adding Floating-Point
Numbers

– Sends drawString message (calls method) to Graphics

object using reference g

• "The sum is" + sum - string concatenation

– sum converted to a string

• sum can be used, even though not defined in paint

– Instance variable, can be used anywhere in class

– Non-local variable

48 g.drawString("The sum is " + sum, 25, 25);

3.6 Viewing Applets in a Web
Browser

• Applets can execute on Java-enabled browsers

– Many different browser version supporting
different Java version specifications

• Some support for Java 1.0, many for Java 1.1
inconsistently

– Netscape Navigator 6 supports Java 2 (section
3.6.1)

– Use Java Plug-in to execute Java 2 applets on
other browsers (section 3.6.2)

Fonts
• By default, strings are drawn using the default font, plain style and default font size.

• To change the font, style or size, we need to create an object of class java.awt.Font and
pass it to the setFont() method of the graphics object used in the paint() method. To create
such a Font object, we need to specify the following parameters:
– The font name.
– The Style (Font.PLAIN, Font.BOLD, Font.ITALIC, or Font.BOLD + Font.ITALIC).
– The font size.

• The font name can be the name of any font available on the particular computer (such as:
TimesRoman, Courier, Helvetica etc.,) or any of the logical names shown in the table below:

Serif A font with small segments at the end, e.g. Times New Roman

SansSerif A font without small segments, e.g. Helvetica

Monospaced A font in which all characters have the same width. e.g.
Courier

Dialog A screen font suitable for labels in dialogs

DialogInput A screen font suitable for user input in text fields

Fonts (cont’d)

• Example: The following applet displays the word Applet in large SansSerif font.

import java.applet.*;

import java.awt.*;

public class BigFontApplet extends Applet{

public void paint(Graphics g){

final int SIZE = 48;

Color myColor = new Color(0.25F, 0.5F, 0.75F);

Font myFont = new Font("SansSerif", Font.BOLD,
SIZE);

g.setColor(myColor);

g.setFont(myFont);

g.drawString("Applet",5,60);

}

}

Fonts (cont’d)

• If an applet will use several fonts, it is good to create the font objects in the
init() method:

import java.applet.*;
import java.awt.*;

public class FontExamples extends Applet{
private Font f, fb, fi, fbi;
public void init() {

setBackground(Color.yellow);
f = new Font("TimesRoman", Font.PLAIN, 18);
fb = new Font("Courier", Font.BOLD, 20);
fi = new Font("TimesRoman", Font.ITALIC, 18);
fbi = new Font("Helvetica", Font.BOLD + Font.ITALIC, 25);

}
public void paint(Graphics g){

g.setColor(Color.blue);
g.setFont(f);
g.drawString("This is TimesRoman plain font", 10, 25);
//...

}
}

Drawing in an Applet

import java.applet.Applet;
import java.awt.*;

// assume that the drawing area is 150 by 150
public class SquareAndRectangle extends Applet
{

final int areaSide = 150 ;
final int width = 100, height = 50;

public void paint (Graphics gr)
{
setBackground(Color.green);
gr.setColor(Color.red);

// outline the drawing area
gr.drawRect(0, 0, areaSide-1, areaSide-1);

// draw interiour rectange.
gr.drawRect(areaSide/2 - width/2 ,

areaSide/2 - height/2, width, height);
}

}

Java’s coordinate system

• Java uses an (x, y) coordinate system

• (0, 0) is the top left corner

• (50, 0) is 50 pixels to the right of (0, 0)

• (0, 20) is 20 pixels down from (0, 0)

• (w - 1, h - 1) is just inside the bottom right corner, where w
is the width of the window and h is its height

(0, 0)

(0, 20)

(50, 0)

(50, 20)

(w-1, h-1)

(50, 0)(0, 0)

(0, 20) (50, 20)

Drawing rectangles

• There are two ways to draw rectangles:

• g.drawRect(left , top , width , height);

• g.fillRect(left , top , width , height);

Drawing strings

• A String is a sequence of characters enclosed in
double quote marks
– "Hello, World!"

• A double quote mark in a String must be preceded
by a backslash (\)
– "He said, \"Please don't go!\" "

– To draw a string, you need to specify not only what you
want to say, but where to say it

– g.drawString(string, left, top);

• For example,
– g.drawString("Example JApplet", 20, 80);

The complete applet
import javax.swing.JApplet;

import java.awt.*;

// CIT 591 example

public class Drawing extends JApplet {

public void paint(Graphics g) {

g.setColor(Color.BLUE);

g.fillRect(20, 20, 50, 30);

g.setColor(Color.RED);

g.fillRect(50, 30, 50, 30);

g.setColor(Color.BLACK);

g.drawString("Example JApplet", 20, 80);

}

}

More java.awt.Graphics

methods
• g.drawLine(x1, y1, x2, y2);

• g.drawOval(left, top, width, height);
• g.fillOval(left, top, width, height);
• g.drawRoundRect(left, top, width, height,

arcWidth, arcHeight);
– arcWidth, arcHeight define the “roundedness” of corners

• g.fillRoundRect(left, top, width, height, arcWidth, arcHeight);
• g.drawArc(left, top, width, height, startAngle, arcAngle);

– Angles are in degrees

– 0 degrees is the 3 o’clock position

– Positive angles are to the right

• g.FillArc(left, top, width, height, startAngle, arcAngle);

Still more Graphics methods
• g.drawPolygon(xPoints, yPoints, n);

• g.fillPolygon(xPoints, yPoints, n);
– xPoints and yPoints are int arrays of size n

– One way to write an int array is:
new int[] { value1, value2, ..., valueN}

– Example: g.drawPolygon(new int[] { 250, 290, 210 },
new int[] { 210, 290, 290 }, 3);

draws a triangle using the 3 points (250, 210), (290, 290), and
(210, 290).

• g.drawPolyline(xPoints, yPoints, n);
– A “polyline” is like a polygon, except the first and last points are not

automatically connected

– Hence, there is no “fillPolyline” method

The HTML page

• You can only run an applet from an HTML page
• The HTML looks something like this:

– <html>
<body>

<h1>Drawing Applet</h1>
<applet code="Drawing.class"

width="100" height="150">
</applet>

</body>
</html>

• Eclipse will create this HTML for you
• You don’t even need to think about the HTML just

yet

Other useful JApplet methods

• System.out.println(String s)

– Works from appletviewer, not from browsers

– Automatically opens an output window.

• showStatus(String s) displays the String in
the applet’s status line.

– Each call overwrites the previous call.

– You have to allow time to read the line!

