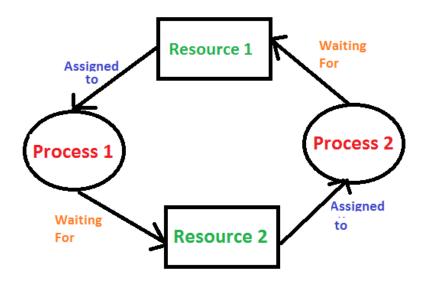


- System consists of resources
- Resource types R_1, R_2, \ldots, R_m

CPU cycles, memory space, I/O devices


- Each resource type *R*_i has *W*_i instances.
- Each process utilizes a resource as follows:
 - request
 - use
 - release

Deadlock is a situation where a set of processes are blocked because each process is holding a resource and waiting for another resource acquired by some other process.

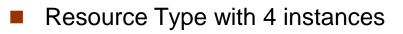
Consider an example when two trains are coming toward each other on same track and there is only one track, none of the trains can move once they are in front of each other.

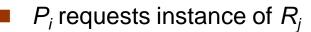
Deadlock Characterization

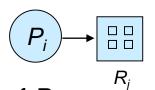
Deadlock can arise if four conditions hold simultaneously.

- Mutual exclusion: only one process at a time can use a resource
- Hold and wait: a process holding at least one resource is waiting to acquire additional resources held by other processes
- No preemption: a resource can be released only voluntarily by the process holding it, after that process has completed its task
- **Circular wait:** there exists a set $\{P_0, P_1, ..., P_n\}$ of waiting processes such that P_0 is waiting for a resource that is held by P_1, P_1 is waiting for a resource that is held by $P_2, ..., P_{n-1}$ is waiting for a resource that is held by P_n , and P_n is waiting for a resource that is held by P_0 .

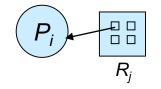
A set of vertices V and a set of edges E.

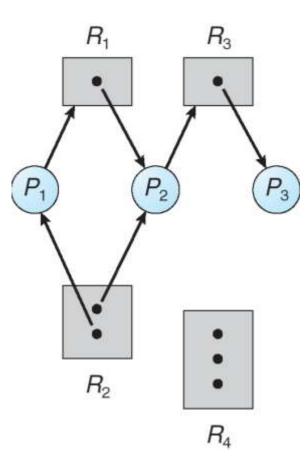

- V is partitioned into two types:
 - $P = \{P_1, P_2, ..., P_n\}$, the set consisting of all the processes in the system
 - R = {R₁, R₂, ..., R_m}, the set consisting of all resource types in the system
- request edge directed edge $P_i \rightarrow R_j$
- **assignment edge** directed edge $R_j \rightarrow P_i$

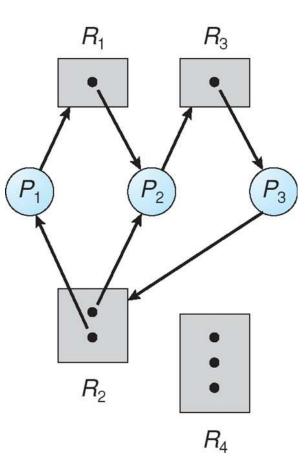




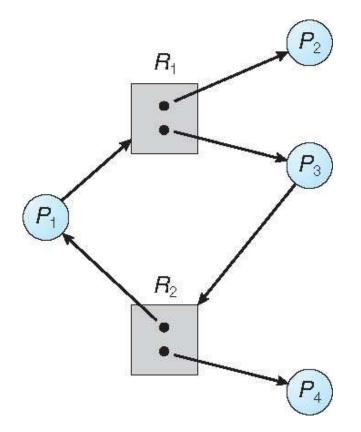
Resource-Allocation Graph (Cont.)




P_i is holding an instance of R_j



Example of a Resource Allocation Graph


Resource Allocation Graph With A Deadlock

Graph With A Cycle But No Deadlock

Basic Facts

- If graph contains no cycles \Rightarrow no deadlock
- If graph contains a cycle \Rightarrow
 - if only one instance per resource type, then deadlock
 - if several instances per resource type, possibility of deadlock

Methods for Handling Deadlocks

- Ensure that the system will *never* enter a deadlock state:
 - Deadlock prevention
 - Deadlock avoidence
- Allow the system to enter a deadlock state and then recover
- Ignore the problem and pretend that deadlocks never occur in the system; used by most operating systems, including UNIX

Restrain the ways request can be made

- Mutual Exclusion not required for sharable resources (e.g., read-only files); must hold for non-sharable resources
- Hold and Wait must guarantee that whenever a process requests a resource, it does not hold any other resources
 - Require process to request and be allocated all its resources before it begins execution, or allow process to request resources only when the process has none allocated to it.
 - Low resource utilization; starvation possible

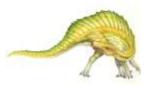
Deadlock Prevention (Cont.)

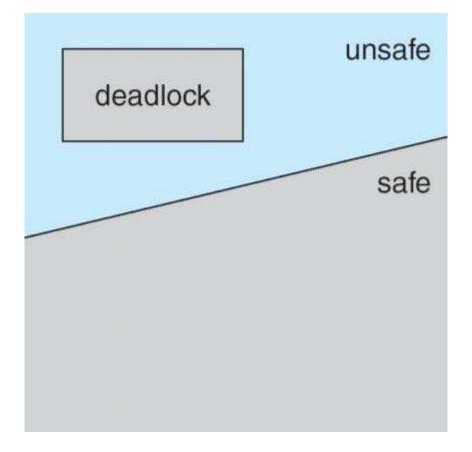
No Preemption –

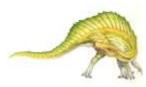
- If a process that is holding some resources requests another resource that cannot be immediately allocated to it, then all resources currently being held are released
- Preempted resources are added to the list of resources for which the process is waiting
- Process will be restarted only when it can regain its old resources, as well as the new ones that it is requesting
- Circular Wait impose a total ordering of all resource types, and require that each process requests resources in an increasing order of enumeration

Deadlock Avoidance

Requires that the system has some additional *a priori* information available


- Simplest and most useful model requires that each process declare the *maximum number* of resources of each type that it may need
- The deadlock-avoidance algorithm dynamically examines the resource-allocation state to ensure that there can never be a circular-wait condition
- Resource-allocation state is defined by the number of available and allocated resources, and the maximum demands of the processes


Basic Facts


- If a system is in safe state \Rightarrow no deadlocks
- If a system is in unsafe state \Rightarrow possibility of deadlock
- Avoidance ⇒ ensure that a system will never enter an unsafe state.

Safe, Unsafe, Deadlock State

Operating System Concepts – 9th Edition

Silberschatz, Galvin and Gagne ©2013

Banker's Algorithm

It is a deadlock avoidance algorithm, this algorithm is applied when there are multiple instances of a resource type.

- Multiple instances
- Each process must a priori claim maximum use
- When a process requests a resource it may have to wait
- When a process gets all its resources it must return them in a finite amount of time

Let n = number of processes, and m = number of resources types.

- Available: Vector of length m. If available [j] = k, there are k instances of resource type R_j available
- Max: n x m matrix. If Max [i,j] = k, then process P_i may request at most k instances of resource type R_i
- Allocation: $n \ge m$ matrix. If Allocation[*i*,*j*] = *k* then P_i is currently allocated *k* instances of R_j
- Need: n x m matrix. If Need[i,j] = k, then P_i may need k more instances of R_i to complete its task

Need [i,j] = Max[i,j] – Allocation [i,j]

Example (Cont.)

Safety Algorithm meed <= available Then, Executes process New available = available + allocation 1.0 Elase, do not execute go forward

Example of Banker's Algorithm

• 5 processes P_0 through P_4 ;

3 resource types:

A (10 instances), B (5instances), and C (7 instances)

Snapshot at time T_0 :

	<u>Allocation</u>	<u>Max</u>	<u>Available</u>
	ABC	ABC	ABC
P_0	010	753	332
P_1	200	322	
P_2	302	902	
P_3	211	222	
P_4	002	433	

Example (Cont.)

The content of the matrix *Need* is defined to be *Max – Allocation*

	<u>Need</u>		
	ABC		
P_0	743		
P_1	122		
P_2	600		
P_3	011		
P_4	431		

The system is in a safe state since the sequence < P₁, P₃, P₄, P₂, P₀> satisfies safety criteria

Example (Cont.)

1	Total; A = 3	10, B=5, 0	2 =≠		1	_
Process		Max Need	Available	Need :	=(Max-A	Ilocation)
P	A B C	A B C 7 5 3		A	B	C
ß	200	N		7	4	3 2
P2	3 0 2	9 0 2	743	6	0	0
P3	2 1 1			2	1	1
	0 2 2			5	3	1
A = (10 - 7) = 3; B = (5 - 2) = 3; C = (7 - 5) = 2						
-: Safe Sequence : { P_1, P_3, P_4, P_0, P_2 } • After P_1 execution, Available resources = $(3+2), (0+3), (0+2)$ = $(5, 3, 2)$						

Request_i = request vector for process P_i . If **Request**_i[**j**] = **k** then process P_i wants **k** instances of resource type R_i

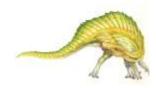
- If *Request_i* ≤ *Need_i* go to step 2. Otherwise, raise error condition, since process has exceeded its maximum claim
- 2. If $Request_i \le Available$, go to step 3. Otherwise P_i must wait, since resources are not available
- 3. Pretend to allocate requested resources to P_i by modifying the state as follows:

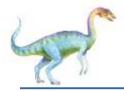
Available = Available – Request_i;

Allocation_i = Allocation_i + Request_i;

*Need*_{*i*} = *Need*_{*i*} - *Request*_{*i*};

- If safe \Rightarrow the resources are allocated to P_i
- If unsafe ⇒ P_i must wait, and the old resource-allocation state is restored





Check that Request \leq Available (that is, (1,0,2) \leq (3,3,2) \Rightarrow true

	Allocation	<u>Need</u>	<u>Available</u>
	ABC	ABC	ABC
P_0	010	743	230
P_1	302	020	
P_2	302	600	
P_3	211	011	
P_4	002	431	

- Executing safety algorithm shows that sequence < P₁, P₃, P₄, P₀, P₂> satisfies safety requirement
- Can request for (3,3,0) by P₄ be granted?
- Can request for (0,2,0) by P₀ be granted?

Safe State

- When a process requests an available resource, system must decide if immediate allocation leaves the system in a safe state
- System is in safe state if there exists a sequence $\langle P_1, P_2, ..., P_n \rangle$ of ALL the processes in the systems such that for each P_i , the resources that P_i can still request can be satisfied by currently available resources + resources held by all the P_i , with j < I
- That is:
 - If P_i resource needs are not immediately available, then P_i can wait until all P_i have finished
 - When P_j is finished, P_i can obtain needed resources, execute, return allocated resources, and terminate
 - When P_i terminates, P_{i+1} can obtain its needed resources, and so on

1. Let *Work* and *Finish* be vectors of length *m* and *n*, respectively. Initialize:

Work = *Available Finish* [*i*] = *false* for *i* = 0, 1, ..., *n*-1

- 2. Find an *i* such that both:
 - (a) *Finish* [*i*] = *false*
 - (b) *Need*_i ≤ *Work*

If no such *i* exists, go to step 4

- 3. Work = Work + Allocation_i Finish[i] = true go to step 2
- 4. If *Finish* [*i*] == *true* for all *i*, then the system is in a safe state

