

Department of Computing and Information System (CLS)

Sequential and Combinational ALU

Topics to be covered

- > Introduction to ALU
- > Introduction to Combinational Circuits
- Design Procedure of Combinational Circuits
- ➤ Analysis Procedure of Combinational Circuits
- Introduction to Sequential Circuits
- > Types of Sequential Circuits

Introduction to ALU

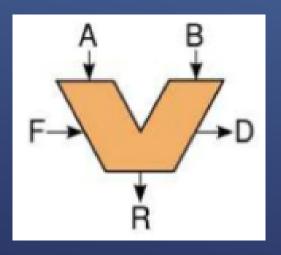
- ALU stands for: Arithmetic Logic Unit
- ALU is a digital circuit that performs

 Arithmetic (Add, Sub, . . .) and Logical (AND, OR, NOT) operations.
- John Von Neumann proposed the ALU in 1947 when he was working on EDVAC.

Introduction to ALU (contd...)

- An ALU is the fundamental unit of any computing system.
- Understanding how an ALU is designed and how it works is essential to building any advanced logic circuits.
- Using this knowledge and experience, we can move on to designing more complex integrated circuits.
- O The ALU is the "heart" of a processor—you could say that everything else in the CPU is there to support the ALU.

TYPICAL SCHEMATIC SYMBOL OF AN ALU


A and B: the inputs to the ALU (aka operands)

R: Output or Result

F: Code or Instruction from the Control Unit

D: Output status; it indicates cases such as:

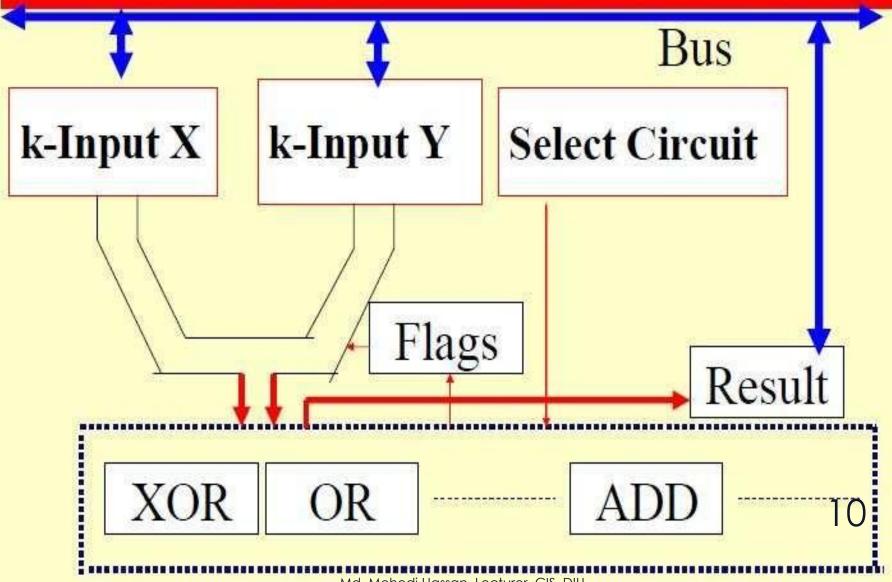
- carry-in
- carry-out,
- overflow,
- division-by-zero
- •And . . .

TYPES OF DIGITAL LOGIC CIRCUITS IN ALU

O COMBINATIONAL CIRCUITS

O SEQUENTIAL CIRCUITS

INTRODUCTION TO COMBINATIONAL CIRCUITS

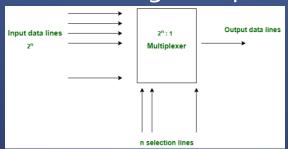

- Combinational Circuits are made of logic
- Doesn't contain memory element, that's why they cant store any information.
- Value of present output is determined by
- O Examples of combinational circuits are half

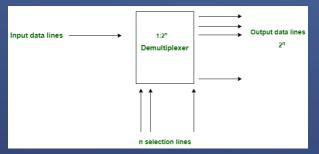
 adders, full adders, sub tractors

BLOCK DIAGRAM OF A COMBINATIONAL CIRCUIT

Combinational Circuits Based ALU

Md. Mehedi Hassan, Lecturer, CIS, DIU


Examples of Combinational Circuits:

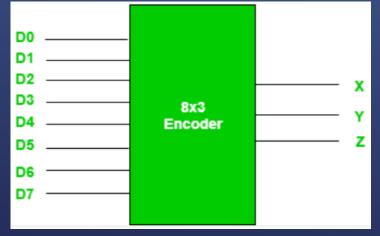

- Multiplexer
- Demultiplexer
- Encoder
- O Decoder
- O Half Adder
- Full Adder

Multiplexer & Demultiplexer

Multiplexer-

 A multiplexer is a combinational circuit where binary information from one of many input lines is selected and directs it to a single output line.

O Demultiplexer-


• Demultiplexing is the reverse process of multiplexing; i.e., a demultiplexer is a combinational circuit that receives information on a single line and transmits this information on 2^n possible output lines.

Encoder & Decoder

Encoder-

• An encoder is a combinational circuit that converts binary information in the form of a 2^n input lines into n output lines, which represent N bit code for the input. For simple encoders, it is assumed that only one input line is active at a

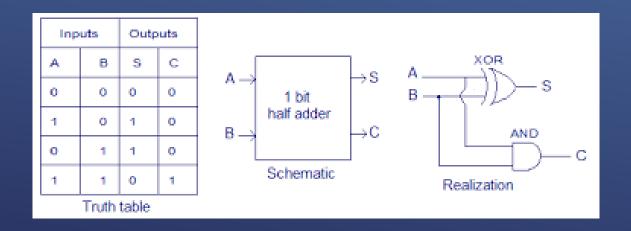
time

13

Encoder & Decoder

O Decoder-

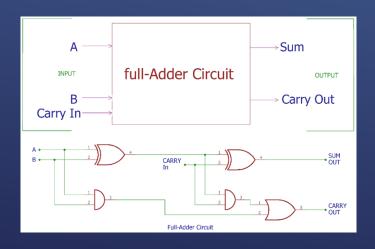
• A decoder is a combinational logic circuit that receives coded information on n input lines and feeds them to maximum of 2^n unique output lines


after conversion.

A ₀ — A ₁ —	2-to	o-4 coder		D ₀ D ₁ D ₂ D ₃
$\begin{array}{c} \text{INPUT} \\ \text{A}_1 \text{A}_0 \end{array}$		$\begin{array}{c} \text{OUTPUT} \\ \text{D}_{3}\text{D}_{2}\text{D}_{1}\text{D}_{0} \end{array}$		
00		0001		
01			0010	
10			0100	
11	1 000			

Half-Adder & Full-Adder

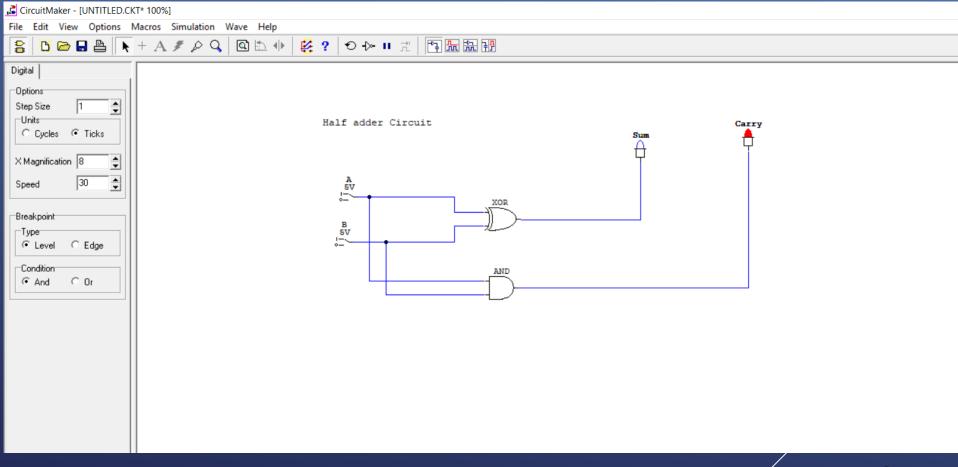
O Half-Adder:


 A half-adder is a combinational circuit that performs the addition of two bits.

Half-Adder & Full-Adder

OFull Adder:

- This type of adder is a little more difficult to implement than a half-adder.
- The main difference between a half-adder and a fulladder is that the full-adder has three inputs and two outputs.


Inputs			Outputs		
Α	В	Cin	Sum	Carry	
0	0	0	0	0	
0	0	1	1	0	
0	1	0	1	0	
0	1	1	0	1	
1	0	0	1	0	
1	0	1	0	1	
1	1	0	0	1	
1	1	1	1	1	

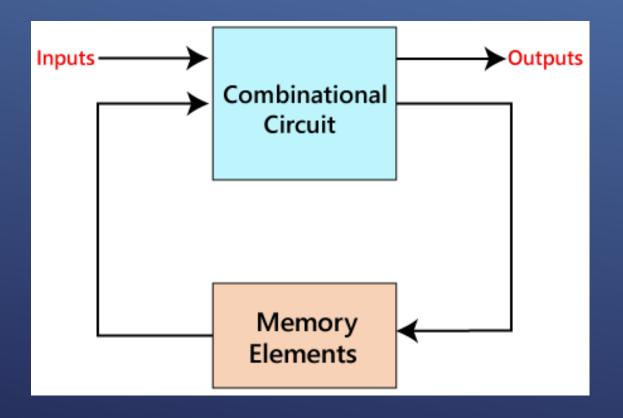
DESIGN PROCEDURE OF COMBINATIONAL CIRCUITS

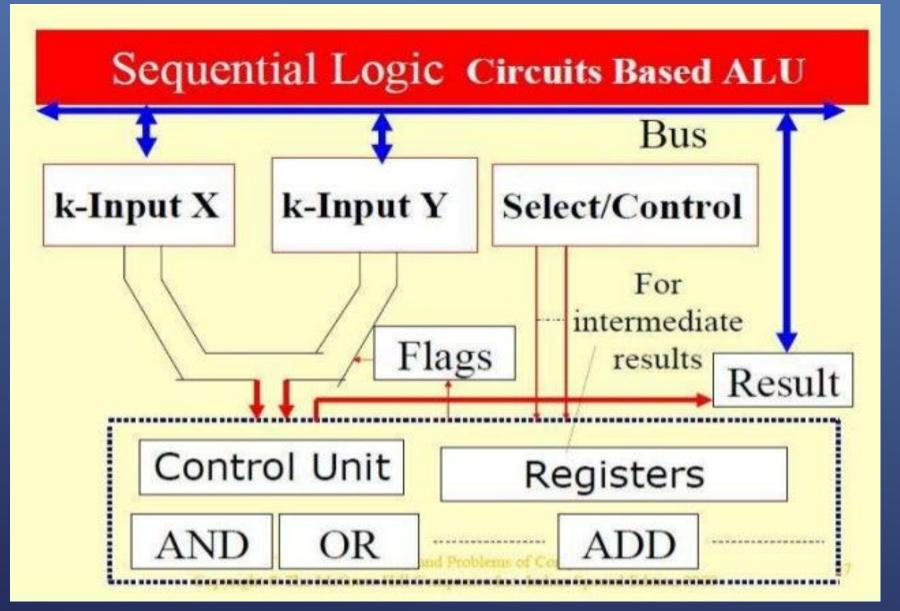
This procedure involves the following steps:

- The problem is stated.
- The number of available input variables and output variables is determined.
- The input and output variables are assigned letter symbols.
- Truth table is drawn
- Boolean function for output is obtained.
- The logic diagram is drawn.

DESIGN PROCEDURE OF COMBINATIONAL CIRCUITS

ANALYSIS PROCEDURE OF COMBINATIONAL CIRCUIT

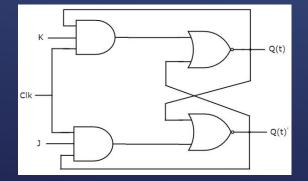

- O TO DETERMINE THE OUTPUT FUNCTIONS AS ALGEBRAIC EXPRESSIONS.
- It is the reverse process of design procedure.
- Logic diagram of the circuit is given.
- Obtain the truth table from the diagram.
- Obtain Boolean function from the Truth Table for output.


SEQUENTIAL LOGIC CIRCUITS

- Made up of combinational circuits and memory elements.
- These memory elements are devices capable of storing ONE-BIT information.
- O Output depends on input and previous state.
- O Examples of sequential circuits are flip flops counters, shift registers

20

BLOCK DIAGRAM OF A SEQUENTIAL CIRCUIT



Examples of Sequential Circuits:

- Flip-Flops
 - JK Flip-Flop
 - RS Flip-Flop
 - T Flip-Flop
 - D Flip-Flop
- Registers
- Counters

Flip-Flops

- Flip-Flops are the basic building blocks of sequential circuits.
- A flip-flop is a binary cell which can store a bit of information.
- A basic function of flip-flop is storage, which means memory. A flip-flop (FF) is capable of storing 1 (one) bit of binary data.
- O It has two stable states either '1' or 'o'. A flip-flop maintains any one of the two stable states which can be treated as zero or one depending on presence and absence of output signals.

Registers and Counters

- A circuit with flip-flops is considered a sequential circuit even in the absence of combinational logic.
- Circuits that include flip-flops are usually classified by the function they perform.
- Two such circuits are registers and counters:

Registers-

- It is a group of flip-flops.
- Its basic function is to hold information within a digital system so as to make it available to the logic units during the computing process.

Counters-

It is essentially a register that goes through a predetermined sequence of states.

TYPES OF SEQUENTIAL CIRCUITS

Sequential circuits are of two types:

OSYNCHRONOUS SEQUENTIAL CIRCUITS

OASYNCHRONOUS SEQUENTIAL CIRCUITS

> SYNCHRONOUS CIRCUITS

- In synchronous sequential circuits, the state of the device changes only at discrete times in response to a clock Pulse.
- In a synchronous circuit, an electronic oscillator called a clock generates a sequence of repetitive pulses called the clock signal which is distributed to all the memory elements in the circuit.

-> ASYNCHRONOUS CIRCUITS

- Asynchronous circuit is not synchronized by a clock signal; the outputs of the circuit change directly in response to changes in Inputs.
- The advantage of asynchronous logic is that it can be faster than synchronous logic, because the circuit doesn't have to wait for a clock signal to process inputs.
- The speed of the device is potentially limited only by the propagation delays of the logical gates used.

28

Thanks to All