
Addressing the Network – IPv4

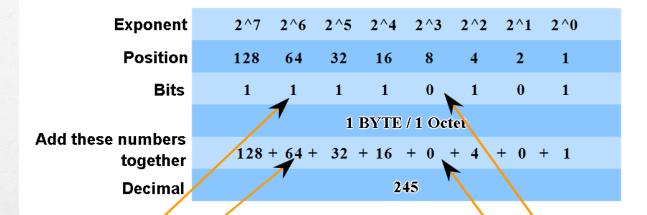
Objectives

- Explain the structure IP addressing and demonstrate the ability to convert between 8-bit binary and decimal numbers.
- Given an IPv4 address, classify by type and describe how it is used in the network
- Explain how addresses are assigned to networks by ISPs and within networks by administrators
- Determine the network portion of the host address and explain the role of the subnet mask in dividing networks.
- Given IPv4 addressing information and design criteria, calculate the appropriate addressing components.
- Use common testing utilities to verify and test network connectivity and operational status of the IP protocol stack on a host.

• Describe the dotted decimal structure of a binary IP address and label its parts

IP version 4 (IPv4) is the current form of addressing used on the Internet.

 Describe the general role of 8-bit binary in network addressing and convert 8-bit binary to decimal

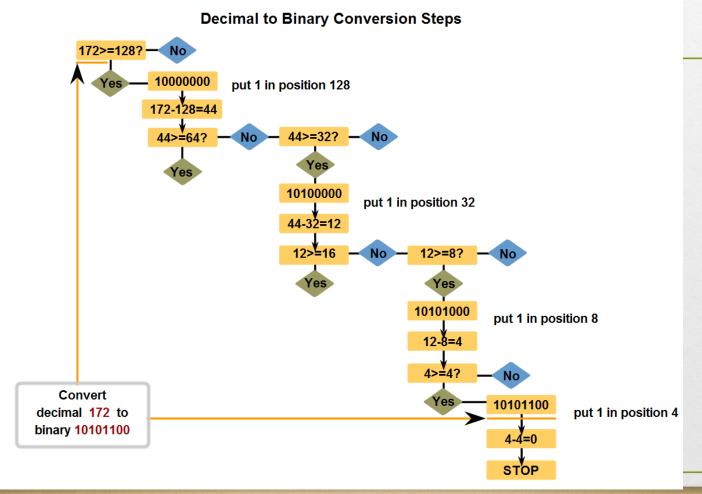

IPv4 Addresses

 192
 .
 168
 .
 10
 .
 1

 11000000
 11000000
 11000000
 11000000

The computer using this IP address is on network 192.168.10.0.

Binary To Decimal Conversion



A 1 in this position means 64 is added to the total.

A 0 in any position means that 0 is added to the total.

11110101 in Binary = Decimal Number 245

Convert decimal to 8-bit binary

• Practice converting decimal to 8-bit binary

Decimal to Binary Conversion Activity

Given a decimal value, enter the correct binary values for each position.

Decimal Value	209							
Exponent	2^7th	2^6th	2^5th	2^4th	2^3rd	2^2nd	2^1st	2^0
Position	128	64	32	16	8	4	2	1
Bit								
	7	7						

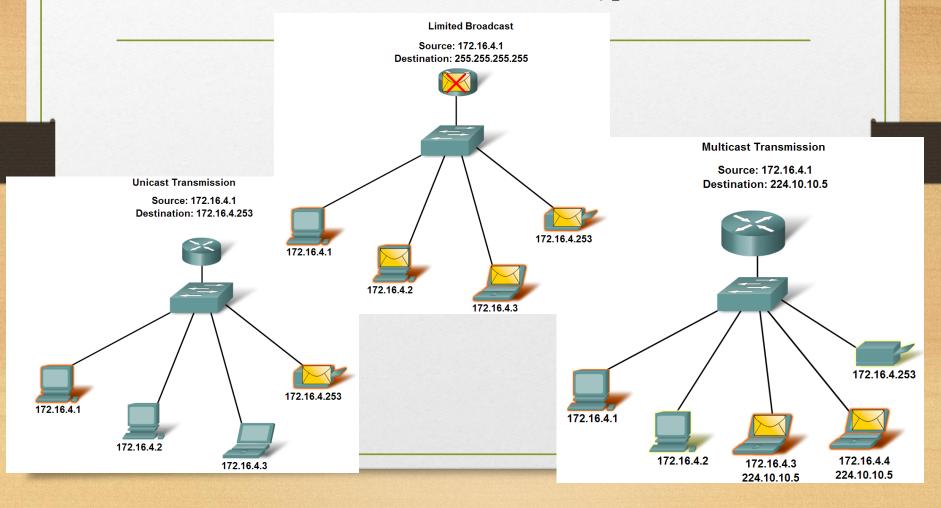
Enter numbers for these 8 positions.

• Name the three types of addresses in the network and describe the purpose of each type

Address Types							
		Host					
Network Address	10	0	0	0			
Network Address	00001010	0000000	0000000	0000000			
Broadcast Address	10	0	0	255			
Broadcast Address	11111111	000000	000000	11111111			
Host Address	10	0	0	0			
Host Address	00001010	0000000	0000000	0000001			

• Determine the network, broadcast and host addresses for a given address and prefix combination

Given address/prefix of 183.26.103.215 /30


Type of Address Enter LAST octet in binary decimal

Network

Broadcast
First Usable Host Address

Last Usable Host Address

• Name the three types of communication in the Network Layer and describe the characteristics of each type

• Identify the address ranges reserved for these special purposes in the IPv4 protocol

Reserved IPv4 Address Ranges

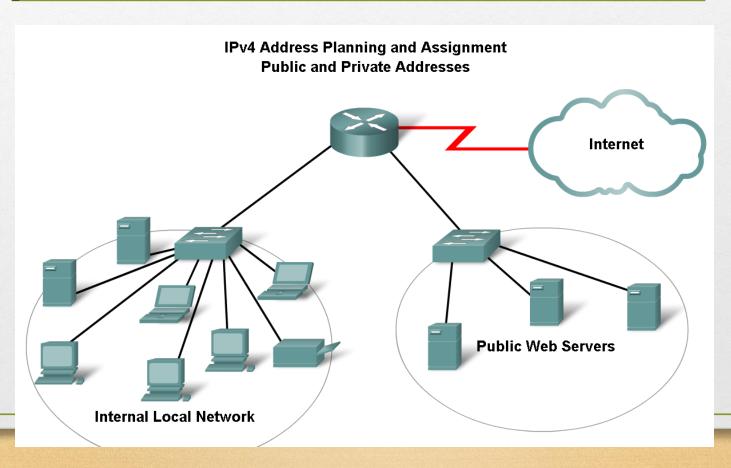
Type of Address	Usage	Reserved IPv4 Address Range	RFC
Host Address	used for IPv4 hosts	0.0.0.0 to 223.255.255.255	790
Multicast Addresses	used for multicast groups on a local network	224.0.0.0 to 239.255.255.255	1700
Experimental Addresses	 used for research or experimentation cannot currently be used for hosts in IPv4 networks 	240.0.0.0 to 255.255.255.254	1700 3330

• Identify the historic method for assigning addresses and the issues associated with the method

Address Class	1st octet range (decimal)	1st octet bits (green bits do not change)	Network(N) and Host(H) parts of address	Default subnet mask (decimal and binary)	Number of possible networks and hosts per network
A	1-127**	00000000- 01111111	N.H.H.H	255.0.0.0	128 nets (2^7) 16,777,214 hosts per net (2^24-2)
В	128-191	10000000- 10111111	N.N.H.H	255.255.0.0	16,384 nets (2^14) 65,534 hosts per net (2^16-2)
С	192-223	11000000- 11011111	N.N.N.H	255.255.255. <mark>0</mark>	2,097,150 nets (2^21) 254 hosts per net (2^8-2)
D	224-239	1110 0000- 1110 1111	NA (multicast)		
E	240-255	11110000- 111111111	NA (experimental)		

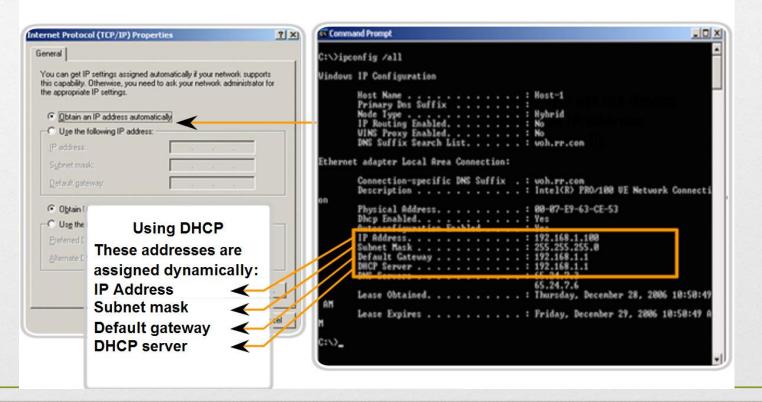
** All zeros (0) and all ones (1) are invalid hosts addresses.

Private Addresses


The private address blocks are:

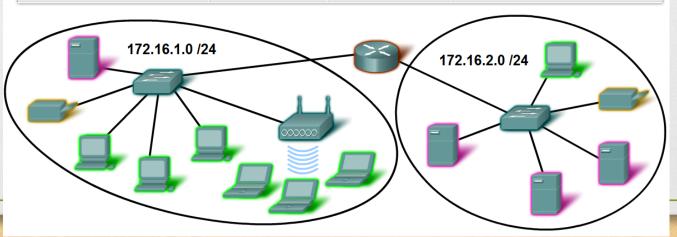
10.0.0.0 to 10.255.255.255 (10.0.0.0 /8)

172.16.0.0 to 172.31.255.255 (172.16.0.0 /12)


192.168.0.0 to 192.168.255.255 (192.168.0.0 /16)

• Explain the importance of using a structured process to assign IP addresses to hosts and the implications for choosing private vs. public addresses

 Explain how end user devices can obtain addresses either statically through an administrator or dynamically through DHCP


Assigning Dynamic Addresses

• Explain which types of addresses should be assigned to devices other than end user devices

Devices IP Address Ranges

Use	First Address	Last Address	Summary Address	
Network Address	172.16.x.0		172.16.x.0 /25	
User hosts (DHCP pool)	172.16.x.1	172.16.x.127	172.10.3.0723	
Servers	172.16.x.128	172.16.x.191	172.16.x.128 /26	
Peripherals	172.16.x.192	172.16.x.223	172.16.x.192 /27	
Networking devices	172.16.x.224	172.16.x.253		
Router (gateway)	172.16.x.254		172.16.x.224 /27	
Broadcast	172.16.x.255			

• Describe the process for requesting IPv4 public addresses, the role ISPs play in the process, and the role of the regional agencies that manage IP address registries

Entities that Oversee IP Address Allocation

Global			IANA		
Regional Internet Registries	AfriNIC Africa Region	APNIC Asia/ Pacific Region	LACNIC Latin America And Caribbean Region	ARIN North America Region	RIPE NCC Europe, Middle East, Central Asia Region

• Identify several changes made to the IP protocol in IPv6 and describe the motivation for migrating from IPv4 to IPv6.

IPv6 Header

Version 6

Traffic Class 8 bits

Flow Label 20 bits

Payload Length 16 bits

Next Hdr 8 bits

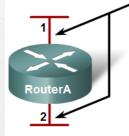
HopLimit 8 bits

3ffe:6a88:85a3:08d3:1319:8a2e:0370:7344

Source Address

2001:0db8:0000:0000:0000:0000:1428:57ab

Destination Address

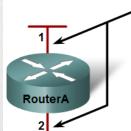

Subnetting

Subnetting allows for creating multiple logical networks from a single address block. Since we use a router to connect these networks together, each interface on a router must have a unique network ID.

Use the subnet mask to divide a network into smaller networks and describe the implications of dividing networks for network planners

Borrowing Bits for Subnets

Only one network address is available.


192.168.1.0 (/24) 255.255.255.0

Address: Mask:

11000000.10101000.00010100.00000000 11111111.11111111.11111111.00000000

Network portion of the address

Borrow a bit from the host portion.

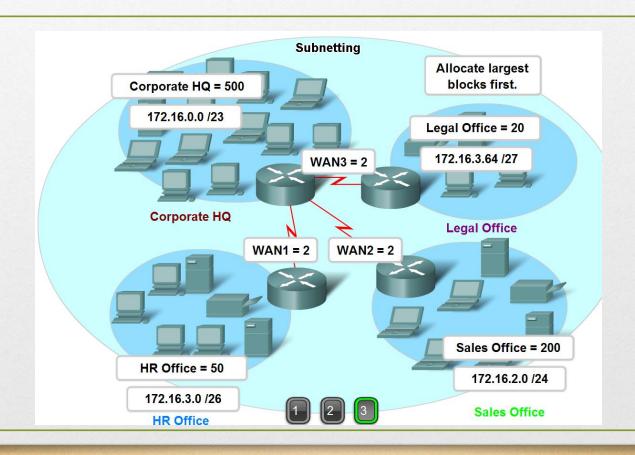
With subnetting, two network addresses are available.

192.168.1.0 (/25) 255, 255, 255, 128

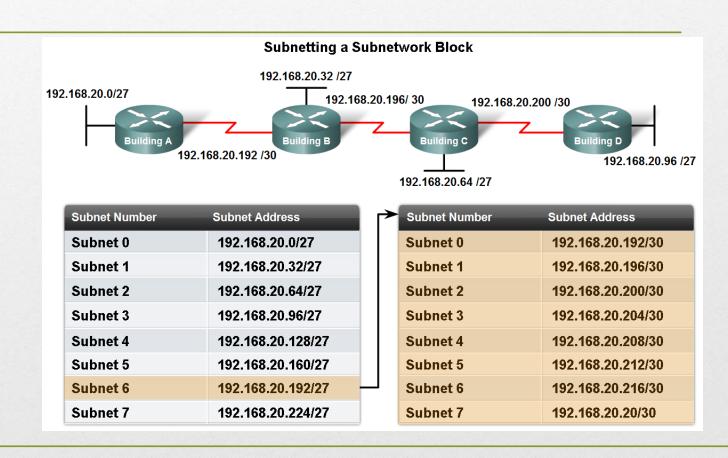
255.255.255.128

192.168.1.128 (/25) Address: Mask:

Mask:


Address:

11000000.10101000.00010100.<mark>0</mark>0000000 11111111.11111111.11111111.10000000


11000000.10101000.00010100.10000000 11111111.11111111.11111111.**1**0000000

Increase the network portion of the address

• Extract network addresses from host addresses using the subnet mask

• Calculate the number of hosts in a network range given an address and subnet mask

• Given a subnet address and subnet mask, calculate the network address, host addresses and broadcast address

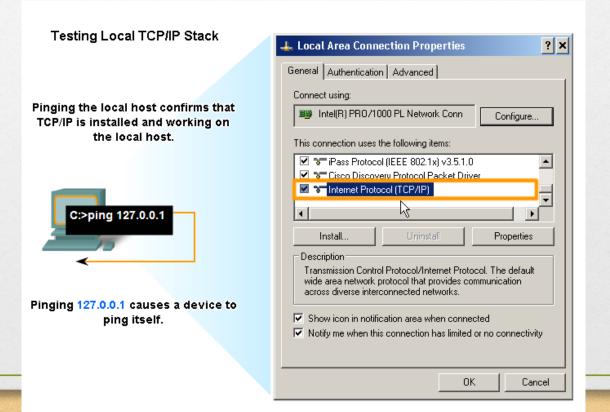
Activity

Given the host IP address and the subnet mask, enter the network address in binary and decimal.

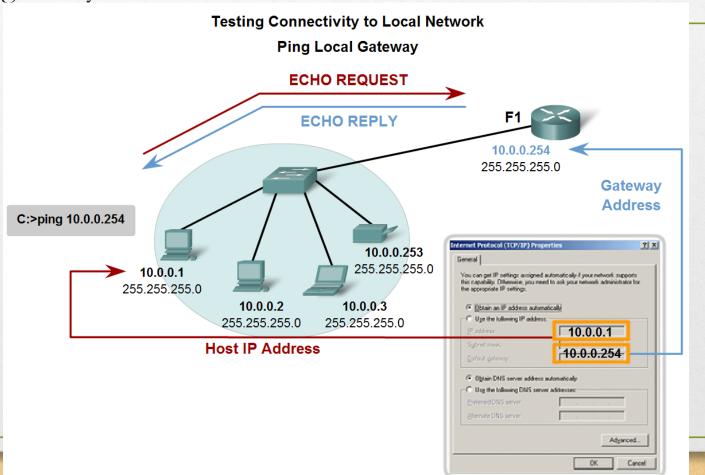
Host Address	10	148	100	54
Subnet Mask	255	255	255	240
Host Address in binary	00001010	10010100	01100100	00110110
Subnet Mask in binary	11111111	11111111	11111111	11110000
Network Address in binary				
Network Address in decimal				

• Given a pool of addresses and masks, assign a host parameter with address, mask and gateway

Given the network address and the subnet mask, enter the number of possible hosts. Click next to Number of Hosts to enter your response.

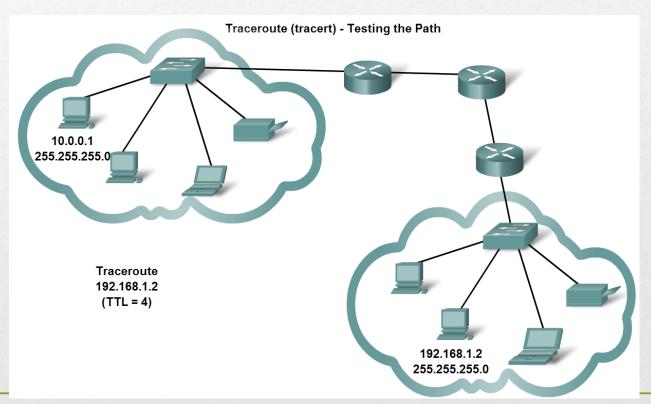

Network Address	10	0	0	0
Subnet Mask	255	255	255	192
Network address in binary	00001010	00000000	00000000	00000000
Subnet Mask in binary	11111111	11111111	11111111	11000000
Number of hosts				

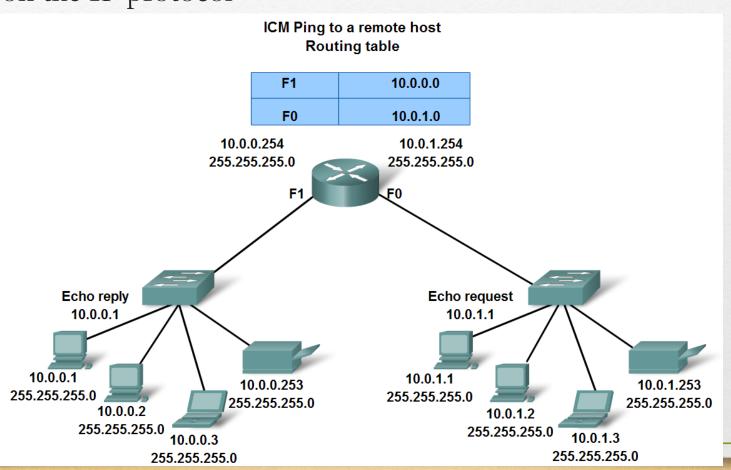
• Given a diagram of a multi-layered network, address range, number of hosts in each network and the ranges for each network, create a network scheme that assigns addressing ranges to each network


Given the network address and the subnet mask, define the range of hosts, the broadcast address, and the next network address.

Network Address in decimal	10	187	0	0
Subnet Mask in decimal	255	255	224	0
Network address in binary	00001010	10111011	00000000	00000000
Subnet Mask in binary	11111111	11111111	11100000	00000000
First Usable Host IP Address in decimal	1st octet	2nd octet	3rd octet	4th octet
Last Usable Host IP Address in decimal	1st octet	2nd octet	3rd octet	4th octet
Broadcast Address in decimal	1st octet	2nd octet	3rd octet	4th octet
Next Network Address in decimal	1st octet	2nd octet	3rd octet	4th octet

• Describe the general purpose of the ping command, trace the steps of its operation in a network, and use the ping command to determine if the IP protocol is operational on a local host


• Use ping to verify that a local host can communicate with a gateway across a local area network


• Use ping to verify that a local host can communicate via a gateway to a device in remote network

• Use tracert/traceroute to observe the path between two devices as they communicate and trace the steps of tracert/traceroute's operation

• Describe the role of ICMP in the TCP/IP suite and its impact on the IP protocol

Thank you all