
Course Code: CIS 122 & 122 L

Course Title: Structured Programming

Course Leader: ABK Bhuiyan (Jehad)

Chapter – 7

Array, String and Pointers

Concept

 Imagine we have a problem that requires us to

read, process, and print a large number of

integers. We must also keep the integers in

memory for the duration of the program.

Concept

 To process large amounts of data we need a powerful data

structure, the array. An array is a collection of elements of

the same data type.

 Since an array is a sequenced collection, we can refer to

the elements in the array as the first element, the second

element, and so forth until we get to the last element.

Problem and traditional approach

 Lets think about a problem that, you need to store 10 scores

into a program. How you can store these into your program?

Processing 10 variables

Another way (Array)

Processing array elements using loop

Notion of array

▪Array

– Homogeneous collection of variables of

same type.

– Group of consecutive memory locations.

– Linear and indexed data structure.

▪To refer to an element, specify

–Array name

–Position number (Index)

Types of Arrays

 There are two types of arrays

Single dimension array

Multiple dimensions array

Single dimension array
 Elements of an array can be integers, floats, characters etc.

 All the elements share a common name with an index called
subscript.

 In an array of n elements:

[0] [1] [2] [3] [n-1]

Why to use single dimension array?
 One example:

 Employees’ salaries in a company.
 Each salary is a float.
 All the salaries could be stored as an array of floats.

 Can then do things like:
 Change an employee’s salary
 Find out an employee’s salary
 Get the total salary bill

 and do it more easily than representing each salary
as a single float (convenience of representation)

Declaration

 When declaring arrays, specify

Data type of array (integers, floats ,

characters…..)

Name of the array.

Size: number of elements

array_type array_name[size] ;

Example:

o int student[10] ;

o float my_array [300] ;

Example
 For example,

int x [4] ;

 An array of integers of 4
elements.

 Note that the starting
memory address is
determined by the operating
system (just like that of
simple variable).

 Contiguous memory
locations are allocated.

1004

1006

1008

1010

1012

1014

1016

1018

(x[0])

(x[1])

(x[2])

(x[3])

memory addresses

Square bracket

More examples of array declaration

 Integer array of 20 elements:

int array_1 [20];

 Character array of 50 elements:

char array_2 [50];

 Float array of 100 elements:

float array_3 [100];

Initializing arrays

 Array elements must be initialized at time of declaration,

otherwise they may contain garbage values

 Initialization can be done either at compile time or run time

Compile Time Initialization

Second way to initialization
The second way is to

Initialize each array element separately

Int id[6];

id[0]=1234;

id[2]=2883;

id[3]=2322;

id[4]=8888;

id[5]=8237;

Run time initialization
 Explicitly initializing an array at run time

 Normally used for large array size

 Example:

for(i=0; i<100; i++)

{

if(i<50)

sum[i] = 0;

else

sum[i] = 1;

}

Basics of character array(String)
 If you are required to store a group of character like your

name, city , or your college name, or any word or text you
need to define a array of characters.

 A char variable can hold a SINGLE character only like

char c = ‘A’ ;

char c1=‘B’;

 What if you need to store “SachinTendulkar” or “MUMBAI” a
string.

Character array
 To hold a single string you need to declare a single dimension

character array

o char str [11] ;

 When declaring a character array to hold a string(group of
characters), one need to declare the array to be one character
longer than the largest string that it will hold

 Example above array str[11] will hold 10 characters and a
NULL character (‘\0’) at the end

C String Operations

 Character arrays are a special type of array that

uses a “\0” character at the end. As such it has it is

own header library called string.h that contains

built-in functions for performing operations on

these specific array types.

 You must include the string header file in your

programs to utilize this functionality.

#include <string.h>

http://www.exforsys.com/?s=include

String Library Functions

 Reading user input string

The gets() function enables the user to enter some characters

followed by the enter key. All the characters entered by the user

get stored in a character array.

 Print the string on console

The puts() function is used to print the string on the console

which is previously read by using gets() or scanf() function.

String Library Functions

 Length of a String

If we had a string, and called the strlen function on it we could

get its length.

 Concatenation of Strings

The strcat function appends one string to another. We can use

this function to concatenate two different strings.

String Library Functions

 Compare Two Strings (Case Sensitive)

Sometimes you want to determine if two strings are the same.

For this we have the strcmp function. If strings are same or

equal strcmp returns 0 otehrwise it returns 1.

 Compare Two Strings (Not Case Sensitive)

If you do not care whether your strings are upper case or lower

case then use strcmpi function instead of the strcmp function

String Library Functions

 Copy Strings

To copy one string to another string variable, you use the strcpy

function.

 Reversing the Order of a String

Will reverse the order of string. So if string was “bobby”, it

would become “ybbob”.

String Library Functions

 Converting Uppercase Strings to Lowercase
Strings

This will convert uppercase characters in string to lowercase.
So “BOBBY” would become “bobby” function.

 Converting Lowercase Strings to Uppercase
Strings

This will convert lowercase characters in string to uppercase.
So “bobby” would become “BOBBY”.

strupr(string);

Multiple dimension array

 A multiple dimension array is an array that has two or more

dimensions.

 Two dimensional arrays are the simplest type of multiple

dimension arrays. They can be used to represent tables of

data, matrices, and other two dimensional objects.

 One of the most obvious example of a two dimensional array

is a table.

How will you store a table or matrix?

Multi-dimensional ARRAYS, Cont.

 When might we use a multi-dimensional array?

 Array of names (i.e., array of strings)

 This generalizes to a list of lists

 Other examples,

Checkerboard

Matrices, lists of vectors

Two Dimensional Arrays

 We can see how a two dimensional array looks like a table or

matrix.

 Thus, we can represent a two dimensional array as rows and

columns.

 To declare a two-dimensional array:

(data type) array_name[# of rows] [# of columns];

2-Dimensional Arrays

Can be illustrated as a table:

Each row is a separate array.

For ex.

col 0 col 1 col 2 col 3

row 0 1 2 3 4

row 1 5 6 7 8

row 2 9 10 11 12

Two Dimensional Arrays Declarations

 Therefore, a two dimensional array of integers, named x,

with 3 rows and 4 columns would be declared as:

int x[3][4];

 A two dimensional array of characters, named c, with 119

rows and 2 columns would be declared as:

char c[119][2];

2-D array initialization
 int table[2][3] = {0,0,0,1,1,1};

 Can also be done as:

int table[2][3] = {{0,0,0},{1,1,1}};

When array is explicitly initialized with all values, first
dimension in its declaration can be skipped

Example, array can be declared as:

int table[][3] = {{0,0,0},{1,1,1}};

But

int table[2][]={0,0,0,1,1,1}; // error

If some values are missing in initializer, they are set to 0

Two-Dimensional Arrays
int MAXROW =3;

int MAXCol =4;

int table[MAXROW][MAXSUB];

Int row, col;

for (row = 0; row < MAXROW; row++)

for (col = 0; col < MAXCol; col++)

scanf (“%d”,&table[row][col])

table

0 1 2 3

0

1

2

2

3

4

1

2

3

3

4

5

table[0]

table[1]

table[2]

0

1

2

Multi-dimensional ARRAYS

 int daytab[2][13] = {

{0,31,28,31,30,31,30,31,31,30,31,30,31},

{0,31,29,31,30,31,30,31,31,30,31,30,31} };

 Note initialization of arrays within an array.

 How to access an individual element

 daytab[1][4] /* 2nd row 5th element

ie30*/

 NOTE – the following is wrong!

daytab[1,4] /* wrong! */

Storing the marks of all students in all

subjects in a two- dimensional array

[0] [1] [2] [3]

45

65

55

80

63

5975

66

72

64

marks[0]

marks[1]

marks[2]

(subject no.)

(student no.) 65

70

Here the marks are stored in an array

marks[students][subjects]

i.e. each row contains the marks of all subjects of one

student,each column contains the marks of all the students

for one subject.

DISADVANTAGE OF ARRAYS

• Memory allocation of array is static:

 Maximum size (maximum number of elements)

requested by the programmer would be reserved in

the memory irrespective of the usage of the number

of elements by the user.The memory space that is

unused is wasted. LESS RESOURCE UTILIZATION.

 For example, int test[30]

• Different data types could not be stored in an array

